
JJ Reference
Model
A Jujutsu repository is a DAG (directed acyclic graph) whose
nodes are called changes. Each change has:

• A state of the filesystem within the repository directory. You
can imagine each change storing a full copy of the directory
and all the files in it, though jj is more efficient than this.

• File conflicts. Some files in a change may contain conflicts,
from a variety of different sources. These conflicts are local to
the change. (Unlike git, they do not block your use of jj.)

• One or more parent changes. Though there is a root change
which has no parents and always has an empty directory.

• A textual description of the change, a.k.a. a commit message.
This is always present, but defaults to the empty string.

There is some additional information attached to the DAG:

• Exactly one of the changes is the working change, written @.
The docs call this the “working copy revision”. (This is
analogous to git’s HEAD.)

• There may be some bookmarks, which are unique string
labels on changes. (When interfacing with git, these
bookmarks act as branch names.)

• The repository may also be linked to a remote repository (e.g.
Github). If so, when pushing and fetching, jj records the last
known position of each remote bookmark, written
BOOKMARK@REMOTE (e.g. feat-ui@origin).

Most jj commands modify your local repository DAG in some
way. Some general rules will help you predict how it responds to
modifications:

• When you make @ point at a change, your repository directory
is updated to match that change’s files.

• If you delete the change that @ is pointing at, @ moves to a new
empty change off of its parent(s).

• If a change has no file modifications and no description, and is
not referenced by @ or by a bookmark, it disappears silently
into the night.

• A change represents a diff. Moving a change tries to apply the
diff to its new parent. This may cause merge conflicts.

• Many commands act on @ by default. Almost all of them can
take a -r/--revision argument to act on a different change.

File Conflicts
If the working change (@) has a file conflict, resolving it is as
simple as editing the file so as to no longer have conflict
markers (<<<<<<<, =======, etc.) in it. For a binary file, replace
the file with the version you want. jj restore may be useful for
this purpose. (Unlike git, file conflicts don’t block you.)

jj git push
jj git push copies changes from the local repo into the remote
repo. If a local change has been modified since it was last
pushed, it becomes a brand new change in the remote repo (just
like force pushing in git replaces old commits with new
commits). To prevent you from accidentally doing this to main, jj
git push makes all pushed changes in the primary branch
immutable. You can still edit them if you want, but you have to
pass the --ignore-immutable flag.

All local bookmarks are similarly copied to the remote repo. If a
bookmark is present both locally and remotely, jj checks if its
(locally recorded) last seen position matches its current position
in the remote repo. If so, the bookmark’s position in the remote
repo is updated. If not, this command fails and tells you to jj
git fetch first (because it means that someone else updated
the bookmark since you last pushed it).

jj git fetch
jj git fetch copies changes from the remote repo into the local
repo. If a change has been modified in the remote repo, it turns
into a new change locally. Though most of the time you’re just
fetching fresh new changes.

Local bookmarks are advanced to match the change that they’re
on in the remote repo. However, if the change a bookmark is on
in the remote is not a descendant of the change it’s on locally, jj
git fetch creates a second copy of that bookmark. This is called
a bookmark conflict because it violates the invariant that
bookmark names are unique. (This is analogous to git pull
producing a merge conflict.) It is up to you how to resolve this
“bookmark conflict”. Some of the options available to you:

• If you want to merge the two changes, say jj new CHANGE-ID-1
CHANGE-ID-2, resolve any file conflicts, then update the
bookmark with jj bookmark move BOOKMARK-NAME. (You can get
the change ids by running jj bookmark list BOOKMARK-NAME.)

• If you want to discard one of the two changes and just use the
other one, say jj bookmark move BOOKMARK-NAME -r CHANGE-ID
for the change you want to keep.

• If you want to rebase one of the changes to come after the
other, say jj rebase -b CHANGE-ID-2 -d CHANGE-ID-1, then jj
bookmark move BOOKMARK-NAME -r CHANGE-ID-2. This will rebase
not only the second change itself, but all changes after it
forked away from the first change.

Commands

Global Setup Commands
jj config set --user user.name MY_NAME
jj config set --user user.email MY_EMAIL
jj config set --user ui.editor MY_EDITOR

jj config edit --user // Manually edit config file

Instead of --user, you can pass --repo to change the repository
specific config, which takes priority.

Repository Commands
• jj git init, or jj git clone URL [DESTINATION]. Make or

clone a git-backed repo.
• jj git init --colocate. Make an existing git repo also be a jj

repo.

Editing your Local Repo
The attached JJ Cheat Sheet visually describes the most
common/fundamental commands for editing a jj repo.

There are also a couple of “alias” commands that are best
thought of as combinations of other jj commands:

• jj commit. Shorthand for jj describe; jj new.
• jj bookmark set BOOKMARK. Either create or move the bookmark,

whichever is valid.

JJ Cheat Sheet

jj
Shows important changes

in the repo.

jj undo
Undoes the last command.

jj new

q@ — feat/ui
“edit foo”

⟩
r@

q — feat/ui
“edit foo”

jj new p q

p q
⟩

r@

p q

jj status
Shows current and

parent change,
and file modifications.

jj describe -m “edit foo”

r@ “edti foo” ⟩ r@ “edit foo”

jj show

r@ “edit foo”

Prints this change’s description.

jj bookmark list

r — feat/ui q — feat/api

Prints all bookmarks.

jj bookmark create feat/ui

r@ ⟩ r@ — feat/ui

jj bookmark delete feat/ui

r — feat/ui ⟩ r

jj bookmark move feat/ui

q — feat/ui r@ ⟩ q r@ — feat/ui

jj bookmark rename feat/ui feat/ux

r — feat/ui ⟩ r — feat/ux

jj edit q

r@ q ⟩ r q@

jj restore --from q (paths..)

r@ Files2 q Files1 ⟩ r@ Files1 q Files1

jj backout

r@ “msg”
Files2

q Files1

⟩

s “Backout ‘msg’”
Files1

r@ “msg”
Files2

q Files1

jj abandon q

r

q

p

Edit2

Edit1
⟩

r

p

Edit2

jj diff (paths..)

r@ Files2

q Files1

Prints the diff between
Files1 and Files2.

jj squash

r@ Files2

q Files1
⟩

r@ Files2

q Files2

r — a change
@ — the working change (“working copy revision”)

“edit foo” — a change’s description
feat/ui — a bookmark
Files1 — a state of the filesystem
Edit1 — a diff between two changes

justinpombrio.net
& lark.gay

Feb 2025

	JJ Reference
	Model
	File Conflicts
	jj git push
	jj git fetch

	Commands
	Global Setup Commands
	Repository Commands
	Editing your Local Repo

	JJ Cheat Sheet

